Creating FE Models from CT Data

Dr. Dieter Pahr, CEO

Dr. Pahr Ingenieurs e.U. www.dr-pahr.at

Dr.Pahr Ingenieurs e.U.

IBDW/ESUCB Banz, June 26, 2017

Setting up an FEA project

Hands-on

Questions

Setting up an FEA project

Hands-on

Questions

medtool Features

"From 3D images to FEA models"

- image processing & analysis
- FEA meshing & modeling
- workflow (provenance) system
- (user) script manager
- parameter study (multi-dataset)
- report maker

Idea behind medtool: Script Manager

A simple script:

python circleArea.py -rad 15.0 [-out file.txt]

Python Code:

```
# ... get parameter from argument list
radius = float(argv[2])
# ... compute area
area = radius**2 * 3.14159
# ... output results
print "\n** Program: circleArea.py **"
print " r =", radius
print " A =", area, "\n"
```


Idea behind medtool: Provenance system

Need to know ...

- 1. name of script (list)
- 2. (active) parameters of each script
- 3. parameter variable (\$radius)
- 4. parameter values (CSV/XLS list \rightarrow \$radius = 12.3, ...)

Getting Started with medtool

Download the trail version:

www.dr-pahr.at

User: home Pass: drpahR1=

- Have a look to the "Help"
- Work through "Examples"

medtool help

Setting up an FEA project

Hands-on

Questions

Project Definition Phase

- scanning
- mechanical testing
- modeling strategy
- verification & validation
- documentation

- \rightarrow alignment, type, storage, ...
- \rightarrow setup, measurements, ...
- \rightarrow tools, FEA type, ...
- \rightarrow model checks, ...
- \rightarrow data handling, reports, ...

FEA Model Types

Setting up an FEA project

Hands-on

Questions

Dieter Pahr

Step 1: Initial Setup & Data Check

- Set work directory
- Create directory structure
- Copy data files
- Make info script

• Check files with "Image \rightarrow Processor"

Run Settings

Script Output

	Script Browser	Script Value : _01_image_orig			
ς	_A_scan_	Common	[0]		
	Image input file name				
		0	-in	slice.mhd	mhd 🔻 🚞

Run Batch Settings

Step 2: Calibration

- CT gives HUs (Hounsfield units):
 - air ≈ -1000, water ≈ 0,
 - bone ≈ 500-1500
- FE needs BMD (bone mineral density):
 - from HU via phantoms
- or BV/TV (bone over total volume):
 - from BMD via calibration equation Dall'ara et.al. *Bone*, **2013**, *52*, 27-38
- Hint: 0-250 scaling
 - BV/TV = 0...1 gray value = 0...250

$$\begin{cases} \mu CT_{BV/TV}[\%] = 0.093 * QCT_{BMD} \frac{mgHA}{cc} + 1.077 \\ \mu CT_{BV/TV}[\%] = 100 \end{cases}$$

 $for - 100 < QCT_{BMD} \le 1064$ $for 1064 < QCT_{BMD} \le 1400$

Step 3: Editing - Modifications

- crop ROI (region of interest)
- re-coarse image

. . .

rotate/register image

Step 4: Segmentation

- automatic segmentations
 - fixed thresholds
 - "fill" regions outside & thickness
- interactive segmentation
 - "labeling" by hand
 - e.g. with Fiji, Slicer, ...
- further modifications ...
 - embedding

Step 5: Meshing - hFE

- Block meshing (multi-material)
- 2D or 3D meshing
- cortex meshing (bone mesher)
- smooth or voxel mesh
- micro and macro meshes
- convert image formats

Step 6: Material Mapping

map gray-values to elasticity

interpolated \rightarrow smooth models

direct \rightarrow voxel models

mapping law:

Isotropic model

Orthotropic model (Zysset)

Interpolated mapping

Step 7: FEA Modeling – Pre-processing

- creating solver input decks \rightarrow Abaqus/Calculix format
- medtool philosophy: "includes"
 - mesh \rightarrow automatically
 - material \rightarrow automatically
 - loading \rightarrow via node sets
 - main file \rightarrow by hand or external pre-postprocessors

MODIFY

Step 7: FEA Modeling - Results

Analyzing FEA results:

- read solver output files via scripts
- use medtools XY-plot , Excel, ...

Viewing FEA results

- external post-processors
- Abaqus, HyperWorks, Paraview, ...

Setting up an FEA project

Hands-on

Questions

Do you have any questions, remarks, ...

Dieter Pahr

Setting up an FEA project

Hands-on

Questions

Summary

CT based FEA:

- Challenge: "Individualization"
- \rightarrow automatization, parametrization, ...
- Choose the right tool for your task!

Thanks for your Attention!

<u>Contact</u>

Dr. Pahr Ingenieurs e.U.

Einöde 11

2511 Pfaffstätten, Austria

+43 664 588 02 93

office@dr-pahr.at

